DeNOx Activated Carbon

It mainly removes nitrogen oxides (NOₓ) through adsorption, catalysis and synergistic effects. Its porous structure and surface functional groups can directly adsorb NO₂, or catalyze the reaction of NOₓ with reducing agents (such as NH₃) at low temperatures to generate N₂; it can also be combined with the desulfurization process to simultaneously adsorb SO₂ and NOₓ and regenerate and recover sulfur resources.

Industry Challenges

Adsorption Capacity Limitation

Catalyst Poisoning

Reproduction Challenge

Economic and Scale-related Obstacles

By-product Management

related types of activated carbon

颗粒活性炭(granular activated carbon)
  • Iodine Value: 600-1200
  • Mesh Size: 1×4/4×8/8×16/8×30/12×40/20×40/20×50/30×60/40×70 (More size on request)
  • Apparent Density: 400-700
Pillared activated carbon
  • Iodine Value: 500-1300
  • Mesh Size:0.9-1mm/1.5-2mm/3-4mm/6mm/8mm(More size on request)
  • Apparent Density: 450-600
粉末活性炭(Powder activated carbon)
  • Iodine Value: 500-1300
  • Mesh Size: 150/200/300/350 (More size on request)
  • Apparent Density: 450 – 550
蜂窝活性炭(Honeycomb activated carbon)
  • Iodine Value: 400-800
  • Mesh Size: 100×100×100mm/100×100×50mm (Custom cell density on request)
  • Apparent Density: 350-450
  • Bore Diameter:1.5-8mm
  • Iodine Value: 700-1200 mg/g
  • Surface Area: 700-1200 m²/g
  • Apparent Density: 320-550 kg/m³
  • Iodine Value: 700-1200 mg/g
  • Surface Area: 700-1200 m²/g
  • Apparent Density: 320-550 kg/m³
Coal-Based Activated Carbon
  • Iodine Value: 700-1200 mg/g
  • Surface Area: 700-1200 m²/g
  • Apparent Density: 300-650 kg/m³
  • Iodine Value: 700-1200 mg/g
  • Surface Area: 700-1200 m²/g
  • Apparent Density: 320-550 kg/m³
  • Activation Method: Steam/gas activation at high temperatures
  • Pore Structure: Microporous-dominated, uniform pore distribution
  • Environmental Profile: Chemical-free, low ash content
  • Primary Applications: Gas-phase adsorption, drinking water purification
  • Activation Method: Chemical activation (e.g., H₃PO₄/ZnCl₂) at moderate temperatures
  • Pore Structure: Mesoporous-rich, higher surface area
  • Process Efficiency: Shorter activation time, 30-50% higher yield
  • Post-Treatment: Acid-washing required to remove residues
  • Functionalization: Loaded with active agents (e.g., I₂/Ag/KOH)
  • Targeted Adsorption: Enhanced capture of specific pollutants (e.g., Hg⁰/H₂S/acid gases)
  • Customization: Chemically optimized for target contaminants
  • Core Applications: Industrial gas treatment, CBRN protection

Why Use Our Activated Carbon

advanced

Outstanding Material Properties:

1. High specific surface area (1200 - 1500 m²/g): The pore structure is well-developed, and the adsorption capacity is increased by more than 30% compared to ordinary activated carbon, significantly extending the regeneration cycle.

2. Customized modification for NOₓ removal: Loaded with Cu/Fe nanoparticles, the catalytic efficiency at low temperatures (100 - 200℃) is over 90%. For the co-processing of SO₂: The surface with basic functional groups is modified, and the sulfur content exceeds 300 mg/g.

3. High mechanical strength: The wear resistance is enhanced by 50%, reducing the pulverization loss in the moving bed process.

recycle

Environmental Protection and Sustainability:

1. Green production: Utilizing coconut shell/biomass raw materials, the carbon footprint is reduced by 50%.

2. Resource recovery output: The desulfurization by-product can be recycled to 98% concentrated sulfuric acid (in line with industrial standards). The waste activated carbon can be incinerated for high calorific value, which may be utilized for resource recovery.

sketch

Adaptability of Innovative Processes:

1. Multi-scenario solution, integrating desulfurization and denitrification, biological activated carbon method, oxidation absorption method, and intelligent regeneration technology. This comprehensive approach ensures high-efficiency pollutant removal across various industrial emissions, adapting to fluctuating loads and stringent environmental standards.

2. Intelligent regeneration technology: Equipped with microwave regeneration equipment, the system reduces energy consumption by 60% compared to traditional thermal regeneration, while maintaining an activity recovery rate > 95%. This sustainable regeneration process minimizes operational costs and extends the lifespan of activated carbon, ensuring long-term economic and environmental benefits.

Process and Technolog

1. Activated Carbon Adsorption Method

Solution Overview

The denitrification by activated carbon adsorption mainly relies on its porous structure for physical adsorption of nitrogen oxides (the adsorption effect of NO₂ is better than that of NO). At the same time, it utilizes surface functional groups or loaded metal catalysts to oxidize NO into NO₂ and convert it into nitrate, or reduce NOₓ to nitrogen gas (N₂) under the action of a reducing agent (such as NH₃).

Activated carbon adsorption method

Key Advantages

2. Activated Carbon Catalytic Reduction Method

Solution Overview

The activated carbon oxidation absorption method for denitrification is a two-step process that combines catalytic oxidation and chemical absorption. Through the catalytic action of activated carbon, the insoluble NO is converted into the more manageable NO₂, and then this substance is converted into nitrate or nitrite by the absorption liquid.

Activated Carbon Catalytic Reduction Method

Key Advantages

3. Activated Carbon Oxidation Absorption Method

Solution Overview

The activated carbon oxidation absorption method for denitrification is a two-step process that combines catalytic oxidation and chemical absorption. Through the catalytic action of activated carbon, the insoluble NO is converted into the more manageable NO₂, and then this substance is converted into nitrate or nitrite by the absorption liquid.

Activated carbon oxidation absorption method

Key Advantages

4. Combined Desulfurization and Denitrification Process

Solution Overview

The combined desulfurization and denitrification process is an integrated flue gas purification technology that simultaneously removes SO₂ and NOₓ through a single system. Among them, activated carbon serves as the core medium to achieve efficient denitrification.

Combined desulfurization and denitrification process

Key Advantages

5. Biological Activated Carbon Method

Solution Overview

The biological activated carbon method for denitrification is a green technology that combines activated carbon adsorption with microbial degradation. Through the dual effects of "physical enrichment and biological transformation", nitrogen oxides (NOₓ) are ultimately converted into harmless nitrogen gas (N₂).

Biological activated carbon method

Key Advantages

滚动至顶部

Get Inquiry

Name