Super capacitor activated carbon

  1. Home
  2. »
  3. Activated Carbon Application
  4. »
  5. Clean Energy Activated Carbon
  6. »
  7. Super capacitor activated carbon
Activated carbon (AC) is the most used electrode material in commercial Electric Double-Layer Capacitors (EDLCs), which are the most widely used supercapacitors. AC serves an important function:
 
High Surface Area: AC has a truly high specific surface area with an enormous surface where electrostatic charges can be stored at the electrode-electrolyte interface (EDLC).
Charge storage: AC physically adsorbs the electrolyte ions to its enormous internal surface to store charge without any chemical reaction.
 
Power delivery: The porous structure allows for rapid ion adsorption/desorption, providing very high power density and very fast charge/discharge rates.
 
Stability & Long Life: The electrostatic charge storage mechanism, and the innate stability of carbon, can give excellent cycle life and reliability.
 
Conductivity: While it requires conductive additives, AC can provide a conductive carbon framework for electron transport.
 
The capacity of AC is based on the ability to easily tune its pore structure (ion accessibility) and surface chemistry. In summary, AC delivers the central supercapacitor benefits of high power, long cycle life, and wide operating temperature limits. It is a critical component for applications requiring short bursts of rapid energy or continuous cycling.

Industry Challenges for Activated Carbon in Supercapacitors

Activated carbon (AC) has several distinct challenges when used in supercapacitors:

Energy Density Limits

Consistency & Sourcing

Electrode Processing and Fabrication

Performance Compromises

Environmental & Processing Implications

Recyclability

related types of activated carbon

颗粒活性炭(granular activated carbon)
  • Iodine Value: 600-1200
  • Mesh Size: 1×4/4×8/8×16/8×30/12×40/20×40/20×50/30×60/40×70 (More size on request)
  • Apparent Density: 400-700
Pillared activated carbon
  • Iodine Value: 500-1300
  • Mesh Size:0.9-1mm/1.5-2mm/3-4mm/6mm/8mm(More size on request)
  • Apparent Density: 450-600
粉末活性炭(Powder activated carbon)
  • Iodine Value: 500-1300
  • Mesh Size: 150/200/300/350 (More size on request)
  • Apparent Density: 450 – 550
蜂窝活性炭(Honeycomb activated carbon)
  • Iodine Value: 400-800
  • Mesh Size: 100×100×100mm/100×100×50mm (Custom cell density on request)
  • Apparent Density: 350-450
  • Bore Diameter:1.5-8mm
  • Iodine Value: 700-1200 mg/g
  • Surface Area: 700-1200 m²/g
  • Apparent Density: 320-550 kg/m³
  • Iodine Value: 700-1200 mg/g
  • Surface Area: 700-1200 m²/g
  • Apparent Density: 320-550 kg/m³
Coal-Based Activated Carbon
  • Iodine Value: 700-1200 mg/g
  • Surface Area: 700-1200 m²/g
  • Apparent Density: 300-650 kg/m³
  • Iodine Value: 700-1200 mg/g
  • Surface Area: 700-1200 m²/g
  • Apparent Density: 320-550 kg/m³
  • Activation Method: Steam/gas activation at high temperatures
  • Pore Structure: Microporous-dominated, uniform pore distribution
  • Environmental Profile: Chemical-free, low ash content
  • Primary Applications: Gas-phase adsorption, drinking water purification
  • Activation Method: Chemical activation (e.g., H₃PO₄/ZnCl₂) at moderate temperatures
  • Pore Structure: Mesoporous-rich, higher surface area
  • Process Efficiency: Shorter activation time, 30-50% higher yield
  • Post-Treatment: Acid-washing required to remove residues
  • Functionalization: Loaded with active agents (e.g., I₂/Ag/KOH)
  • Targeted Adsorption: Enhanced capture of specific pollutants (e.g., Hg⁰/H₂S/acid gases)
  • Customization: Chemically optimized for target contaminants
  • Core Applications: Industrial gas treatment, CBRN protection

Why Use Our Activated Carbon

fabric(1)

Exceptional Material Consistency:

Our stringent manufacturing controls guarantee the uniformity of surface area, pore size distribution, and particle morphology from batch-to-batch. As a result, we offer predictable electrode performance, and easier integration into existing manufacturing systems.

Enhanced Electrochemical Performance:

Our engineered dual hierarchical porosity (micro-meso-macro pores) maximize the ion-accessible surface area while supporting fast ion diffusion, providing our electrodes with very high power density and energy density.

Improved Long-Term Stability:

By using advanced surface purification, we minimize the unstable oxygen functional groups and metallic impurities on our surface to minimize gas evolution during cycling, thus improving device lifetime, and operational safety.

sketch

Customized Application Solutions:

Our surface chemistry and pore structures can be tuned and customized for specific electrolyte compatibility and to target performance measures (e.g., high power vs. high energy focus).

copy-two-paper-sheets-interface-symbol(1)

Sustainable and Scalable Copying Supply:

We use reliable precursors and optimized activation conditions to ensure our practice is environmentally responsible and offers reliable quality at scale and reasonable costs.

Process and Technolog

1. Primary Electrode Material in EDLC Supercapacitors

Activated carbon (AC) serves as the foundational electrode material in commercial Electrical Double-Layer Capacitors (EDLCs), leveraging its porous structure for electrostatic charge storage.

Solution Overview

Upon AC electrodes, charge is stored physically due to the mechanism of ion adsorption at the electrode/electrolyte interface. AC electrodes have high surface area and tunable pore subnetworks (micro/mesopores) which could help with the number of accessible ions as well as the overall charge storage capacity.

Key Advantages

2. Biomass-Derived Sustainable Electrodes

Agricultural waste (e.g., banana peels, coconut shells, pine needles) is converted into high-performance AC, aligning with circular economy principles.
 

Solution Overview

Biomass precursors undergo carbonization and chemical activation (e.g., KOH, self-activation) to produce AC with tailored pore hierarchies and heteroatom doping (O, N). This enhances conductivity and pseudocapacitance.

Key Advantages

3. Composite Electrodes with Transition Metal Hydroxides

Hybrid electrodes combine AC with transition metal hydroxides (e.g., Ni(OH)₂, Co(OH)₂) to synergize EDLC and pseudocapacitive storage.

Solution Overview

AC acts as a conductive scaffold for metal hydroxides, mitigating their poor conductivity and stacking issues. The composite leverages both double-layer capacitance (AC) and reversible faradaic reactions (hydroxides).

Key Advantages

4. Post-Filling for High Volumetric Performance

Low density of porous AC limits volumetric energy density. Post-filling strategies address this by densifying pore structures.

Solution Overview

Macro/mesopores in AC are filled with carbonizable agents (e.g., tannic acid), followed by carbonization. This increases density while preserving microporous charge storage sites.

Key Advantages

5. Surface Functional Group Engineering for Gas Suppression

Unstable oxygen functional groups on AC cause gas evolution (e.g., O₂) during cycling, leading to supercapacitor swelling.

Solution Overview

High-temperature treatment removes surface groups (e.g., carboxyl, quinone). Mixed-acid purification further reduces impurities (e.g., Fe), minimizing gas generation.

Key Advantages

滚动至顶部

Get Inquiry

Name