超级活性炭电容器

Buy Super Capacitor Activated Carbon

Activated carbon (AC) is the most used electrode material in commercial Electric Double-Layer Capacitors (EDLCs), which are the most widely used supercapacitors. AC serves an important function:
 
High Surface Area: AC has a truly high specific surface area with an enormous surface where electrostatic charges can be stored at the electrode-electrolyte interface (EDLC).
Charge storage: AC physically adsorbs the electrolyte ions to its enormous internal surface to store charge without any chemical reaction.
 
Power delivery: The porous structure allows for rapid ion adsorption/desorption, providing very high power density and very fast charge/discharge rates.
 
Stability & Long Life: The electrostatic charge storage mechanism, and the innate stability of carbon, can give excellent cycle life and reliability.
 
Conductivity: While it requires conductive additives, AC can provide a conductive carbon framework for electron transport.
 
The capacity of AC is based on the ability to easily tune its pore structure (ion accessibility) and surface chemistry. In summary, AC delivers the central supercapacitor benefits of high power, long cycle life, and wide operating temperature limits. It is a critical component for applications requiring short bursts of rapid energy or continuous cycling.

Industry Challenges for Activated Carbon in Supercapacitors

Activated carbon (AC) has several distinct challenges when used in supercapacitors:

Energy Density Limits

Consistency & Sourcing

Electrode Processing and Fabrication

Performance Compromises

Environmental & Processing Implications

Recyclability

相关类型的活性炭

颗粒活性炭(粒状活性炭)
  • 碘值: 600-1200
  • 网眼尺寸:1×4/4×8/8×16/8×30/12×40/20×40/20×50/30×60/40×70(可根据要求提供更多尺寸)
  • 表观密度400-700
柱状活性炭
  • 碘值:500-1300
  • 网眼尺寸:0.9-1mm/1.5-2mm/3-4mm/6mm/8mm(可根据要求提供更多尺寸)
  • 表观密度450-600
粉末活性炭(Powder activated carbon)
  • 碘值:500-1300
  • 网眼尺寸:150/200/300/350(可根据要求提供更多尺寸)
  • 表观密度:450 - 550
蜂窝活性炭(蜂巢活性炭)
  • 碘值400-800
  • 网眼尺寸:100×100×100 毫米/100×100×50 毫米(可根据要求定制细胞密度)
  • 表观密度350-450
  • 孔径:1.5-8 毫米
  • 碘值:700-1200 毫克/克
  • 表面积:700-1200 平方米/克
  • 表观密度:320-550 公斤/立方米
  • 碘值:700-1200 毫克/克
  • 表面积:700-1200 平方米/克
  • 表观密度:320-550 公斤/立方米
煤基活性炭
  • 碘值:700-1200 毫克/克
  • 表面积:700-1200 平方米/克
  • 表观密度:300-650 公斤/立方米
  • 碘值:700-1200 毫克/克
  • 表面积:700-1200 平方米/克
  • 表观密度:320-550 公斤/立方米
  • 活化方法:高温蒸汽/气体活化
  • 孔隙结构:微孔为主,孔隙分布均匀
  • 环境简介:无化学物质,灰分含量低
  • 主要应用:气相吸附、饮用水净化
  • 活化方法:在中等温度下进行化学活化(如 H₃PO₄/ZnCl₂)。
  • 孔隙结构:介孔丰富,表面积较大
  • 工艺效率:活化时间更短,30-50% 产量更高
  • 后处理:需要进行酸洗以去除残留物
  • 功能化:添加活性剂(如 I₂/Ag/KOH)
  • 定向吸附:增强对特定污染物(如 Hg⁰/H₂S/酸性气体)的捕捉能力
  • 定制:针对目标污染物进行化学优化
  • 核心应用:工业气体处理、核生化防护

为什么使用我们的活性炭

fabric(1)

Exceptional Material Consistency:

Our stringent manufacturing controls guarantee the uniformity of surface area, pore size distribution, and particle morphology from batch-to-batch. As a result, we offer predictable electrode performance, and easier integration into existing manufacturing systems.

Enhanced Electrochemical Performance:

Our engineered dual hierarchical porosity (micro-meso-macro pores) maximize the ion-accessible surface area while supporting fast ion diffusion, providing our electrodes with very high power density and energy density.

Improved Long-Term Stability:

By using advanced surface purification, we minimize the unstable oxygen functional groups and metallic impurities on our surface to minimize gas evolution during cycling, thus improving device lifetime, and operational safety.

写生

Customized Application Solutions:

Our surface chemistry and pore structures can be tuned and customized for specific electrolyte compatibility and to target performance measures (e.g., high power vs. high energy focus).

copy-two-paper-sheets-interface-symbol(1)

Sustainable and Scalable Copying Supply:

We use reliable precursors and optimized activation conditions to ensure our practice is environmentally responsible and offers reliable quality at scale and reasonable costs.

工艺与技术

1. Primary Electrode Material in EDLC Supercapacitors

Activated carbon (AC) serves as the foundational electrode material in commercial Electrical Double-Layer Capacitors (EDLCs), leveraging its porous structure for electrostatic charge storage.

解决方案概述

Upon AC electrodes, charge is stored physically due to the mechanism of ion adsorption at the electrode/electrolyte interface. AC electrodes have high surface area and tunable pore subnetworks (micro/mesopores) which could help with the number of accessible ions as well as the overall charge storage capacity.

主要优势

2. Biomass-Derived Sustainable Electrodes

Agricultural waste (e.g., banana peels, coconut shells, pine needles) is converted into high-performance AC, aligning with circular economy principles.
 

解决方案概述

Biomass precursors undergo carbonization and chemical activation (e.g., KOH, self-activation) to produce AC with tailored pore hierarchies and heteroatom doping (O, N). This enhances conductivity and pseudocapacitance.

主要优势

3. Composite Electrodes with Transition Metal Hydroxides

Hybrid electrodes combine AC with transition metal hydroxides (e.g., Ni(OH)₂, Co(OH)₂) to synergize EDLC and pseudocapacitive storage.

解决方案概述

AC acts as a conductive scaffold for metal hydroxides, mitigating their poor conductivity and stacking issues. The composite leverages both double-layer capacitance (AC) and reversible faradaic reactions (hydroxides).

主要优势

4. Post-Filling for High Volumetric Performance

Low density of porous AC limits volumetric energy density. Post-filling strategies address this by densifying pore structures.

解决方案概述

Macro/mesopores in AC are filled with carbonizable agents (e.g., tannic acid), followed by carbonization. This increases density while preserving microporous charge storage sites.

主要优势

5. Surface Functional Group Engineering for Gas Suppression

Unstable oxygen functional groups on AC cause gas evolution (e.g., O₂) during cycling, leading to supercapacitor swelling.

解决方案概述

High-temperature treatment removes surface groups (e.g., carboxyl, quinone). Mixed-acid purification further reduces impurities (e.g., Fe), minimizing gas generation.

主要优势

相关博客

The role of activated carbon in Super Capacitors
更多信息
滚动至顶部

获取咨询

名称