超活性炭コンデンサ

Buy Super Capacitor Activated Carbon

Activated carbon (AC) is the most used electrode material in commercial Electric Double-Layer Capacitors (EDLCs), which are the most widely used supercapacitors. AC serves an important function:
 
High Surface Area: AC has a truly high specific surface area with an enormous surface where electrostatic charges can be stored at the electrode-electrolyte interface (EDLC).
Charge storage: AC physically adsorbs the electrolyte ions to its enormous internal surface to store charge without any chemical reaction.
 
Power delivery: The porous structure allows for rapid ion adsorption/desorption, providing very high power density and very fast charge/discharge rates.
 
Stability & Long Life: The electrostatic charge storage mechanism, and the innate stability of carbon, can give excellent cycle life and reliability.
 
Conductivity: While it requires conductive additives, AC can provide a conductive carbon framework for electron transport.
 
The capacity of AC is based on the ability to easily tune its pore structure (ion accessibility) and surface chemistry. In summary, AC delivers the central supercapacitor benefits of high power, long cycle life, and wide operating temperature limits. It is a critical component for applications requiring short bursts of rapid energy or continuous cycling.

スーパーキャパシタにおける活性炭の課題

活性炭(AC)をスーパーキャパシタに使用する場合、いくつかの明確な課題がある:

Energy Density Limits

Consistency & Sourcing

Electrode Processing and Fabrication

Performance Compromises

Environmental & Processing Implications

Recyclability

活性炭の種類

颗粒活性炭(粒状活性炭)
  • ヨウ素価:600-1200
  • メッシュサイズ:1×4/4×8/8×16/8×30/12×40/20×40/20×50/30×60/40×70 (その他のサイズはお問い合わせください)
  • 見かけ密度400-700
柱状活性炭
  • ヨウ素価:500~1300
  • 網のサイズ: 0.9-1mm/1.5-2mm/3-4mm/6mm/8mm (より多くのサイズは要求あり次第)
  • 見かけ密度450-600
粉末活性炭(粉末活性炭)
  • ヨウ素価:500~1300
  • メッシュサイズ:150/200/300/350 (ご要望によりその他のサイズも可能)
  • 見かけ密度450 - 550
蜂窝活性炭(ハニカム活性炭)
  • ヨウ素価400-800
  • メッシュサイズ: 100×100×100mm/100×100×50mm (セル密度はご要望に応じます)
  • 見かけ密度350-450
  • ボア径:1.5-8mm
  • ヨウ素価:700~1200mg/g
  • 表面積700-1200 m²/g
  • 見かけ密度320-550 kg/m³
  • ヨウ素価:700~1200mg/g
  • 表面積700-1200 m²/g
  • 見かけ密度320-550 kg/m³
石炭系活性炭
  • ヨウ素価:700~1200mg/g
  • 表面積700-1200 m²/g
  • 見かけ密度300-650 kg/m³
  • ヨウ素価:700~1200mg/g
  • 表面積700-1200 m²/g
  • 見かけ密度320-550 kg/m³
  • 活性化方法高温でのスチーム/ガス活性化
  • 細孔構造:マイクロポーラス支配、均一な細孔分布
  • 環境プロフィール化学薬品不使用、低灰分
  • 主な用途気相吸着、飲料水浄化
  • 活性化方法:適度な温度での化学的活性化(例:H₃PO₄/ZnCl₂)
  • 細孔構造:メソポーラスリッチ、高表面積
  • プロセス効率:より短い活性化時間、30-50% より高い収率
  • 後処理:残留物を除去するために酸洗いが必要
  • 官能基化:活性剤を添加(例:I₂/Ag/KOH)
  • ターゲット吸着:特定の汚染物質(例:Hg⁰/H₂S/ 酸性ガス)の捕獲強化
  • カスタマイズ対象汚染物質に化学的に最適化
  • コアアプリケーション工業用ガス処理、CBRN防護

当社の活性炭を使用する理由

fabric(1)

Exceptional Material Consistency:

Our stringent manufacturing controls guarantee the uniformity of surface area, pore size distribution, and particle morphology from batch-to-batch. As a result, we offer predictable electrode performance, and easier integration into existing manufacturing systems.

Enhanced Electrochemical Performance:

Our engineered dual hierarchical porosity (micro-meso-macro pores) maximize the ion-accessible surface area while supporting fast ion diffusion, providing our electrodes with very high power density and energy density.

Improved Long-Term Stability:

By using advanced surface purification, we minimize the unstable oxygen functional groups and metallic impurities on our surface to minimize gas evolution during cycling, thus improving device lifetime, and operational safety.

sketch

Customized Application Solutions:

Our surface chemistry and pore structures can be tuned and customized for specific electrolyte compatibility and to target performance measures (e.g., high power vs. high energy focus).

copy-two-paper-sheets-interface-symbol(1)

Sustainable and Scalable Copying Supply:

We use reliable precursors and optimized activation conditions to ensure our practice is environmentally responsible and offers reliable quality at scale and reasonable costs.

プロセスと技術

1. Primary Electrode Material in EDLC Supercapacitors

Activated carbon (AC) serves as the foundational electrode material in commercial Electrical Double-Layer Capacitors (EDLCs), leveraging its porous structure for electrostatic charge storage.

ソリューションの概要

Upon AC electrodes, charge is stored physically due to the mechanism of ion adsorption at the electrode/electrolyte interface. AC electrodes have high surface area and tunable pore subnetworks (micro/mesopores) which could help with the number of accessible ions as well as the overall charge storage capacity.

主な利点

2. Biomass-Derived Sustainable Electrodes

Agricultural waste (e.g., banana peels, coconut shells, pine needles) is converted into high-performance AC, aligning with circular economy principles.
 

ソリューションの概要

Biomass precursors undergo carbonization and chemical activation (e.g., KOH, self-activation) to produce AC with tailored pore hierarchies and heteroatom doping (O, N). This enhances conductivity and pseudocapacitance.

主な利点

3. Composite Electrodes with Transition Metal Hydroxides

Hybrid electrodes combine AC with transition metal hydroxides (e.g., Ni(OH)₂, Co(OH)₂) to synergize EDLC and pseudocapacitive storage.

ソリューションの概要

AC acts as a conductive scaffold for metal hydroxides, mitigating their poor conductivity and stacking issues. The composite leverages both double-layer capacitance (AC) and reversible faradaic reactions (hydroxides).

主な利点

4. Post-Filling for High Volumetric Performance

Low density of porous AC limits volumetric energy density. Post-filling strategies address this by densifying pore structures.

ソリューションの概要

Macro/mesopores in AC are filled with carbonizable agents (e.g., tannic acid), followed by carbonization. This increases density while preserving microporous charge storage sites.

主な利点

5. Surface Functional Group Engineering for Gas Suppression

Unstable oxygen functional groups on AC cause gas evolution (e.g., O₂) during cycling, leading to supercapacitor swelling.

ソリューションの概要

High-temperature treatment removes surface groups (e.g., carboxyl, quinone). Mixed-acid purification further reduces impurities (e.g., Fe), minimizing gas generation.

主な利点

関連ブログ

スーパーキャパシタにおける活性炭の役割
続きを読む
上部へスクロール

お問い合わせ

名称