Condensador de carvão super ativado

Buy Super Capacitor Activated Carbon

Activated carbon (AC) is the most used electrode material in commercial Electric Double-Layer Capacitors (EDLCs), which are the most widely used supercapacitors. AC serves an important function:
 
High Surface Area: AC has a truly high specific surface area with an enormous surface where electrostatic charges can be stored at the electrode-electrolyte interface (EDLC).
Charge storage: AC physically adsorbs the electrolyte ions to its enormous internal surface to store charge without any chemical reaction.
 
Power delivery: The porous structure allows for rapid ion adsorption/desorption, providing very high power density and very fast charge/discharge rates.
 
Stability & Long Life: The electrostatic charge storage mechanism, and the innate stability of carbon, can give excellent cycle life and reliability.
 
Conductivity: While it requires conductive additives, AC can provide a conductive carbon framework for electron transport.
 
The capacity of AC is based on the ability to easily tune its pore structure (ion accessibility) and surface chemistry. In summary, AC delivers the central supercapacitor benefits of high power, long cycle life, and wide operating temperature limits. It is a critical component for applications requiring short bursts of rapid energy or continuous cycling.

Industry Challenges for Activated Carbon in Supercapacitors

O carvão ativado (CA) apresenta vários desafios distintos quando utilizado em supercondensadores:

Energy Density Limits

Consistency & Sourcing

Electrode Processing and Fabrication

Performance Compromises

Environmental & Processing Implications

Recyclability

tipos relacionados de carvão ativado

Carvão ativado granular)
  • Valor de iodo: 600-1200
  • Tamanho da malha: 1×4/4×8/8×16/8×30/12×40/20×40/20×50/30×60/40×70 (Mais tamanho a pedido)
  • Densidade aparente: 400-700
Carvão ativado com pilares
  • Valor de iodo: 500-1300
  • Tamanho da malha:0.9-1mm/1.5-2mm/3-4mm/6mm/8mm(Mais tamanho a pedido)
  • Densidade aparente: 450-600
Carvão ativado em pó)
  • Valor de iodo: 500-1300
  • Dimensão da malha: 150/200/300/350 (outras dimensões a pedido)
  • Densidade aparente: 450 - 550
Carvão ativado em favo de mel)
  • Valor de iodo: 400-800
  • Tamanho da malha: 100×100×100mm/100×100×50mm (densidade celular personalizada a pedido)
  • Densidade aparente: 350-450
  • Diâmetro do furo: 1,5-8 mm
  • Valor de iodo: 700-1200 mg/g
  • Área de superfície: 700-1200 m²/g
  • Densidade aparente: 320-550 kg/m³
  • Valor de iodo: 700-1200 mg/g
  • Área de superfície: 700-1200 m²/g
  • Densidade aparente: 320-550 kg/m³
Carvão ativado à base de carvão
  • Valor de iodo: 700-1200 mg/g
  • Área de superfície: 700-1200 m²/g
  • Densidade aparente: 300-650 kg/m³
  • Valor de iodo: 700-1200 mg/g
  • Área de superfície: 700-1200 m²/g
  • Densidade aparente: 320-550 kg/m³
  • Método de ativação: Ativação por vapor/gás a altas temperaturas
  • Estrutura de poros: Microporosa dominada, distribuição uniforme dos poros
  • Perfil ambiental: Sem químicos, baixo teor de cinzas
  • Aplicações principais: Adsorção em fase gasosa, purificação de água potável
  • Método de ativação: Ativação química (por exemplo, H₃PO₄/ZnCl₂) a temperaturas moderadas
  • Estrutura de poros: Mesoporoso-rico, maior área de superfície
  • Eficiência do processo: Tempo de ativação mais curto, rendimento 30-50% mais elevado
  • Pós-tratamento: É necessária uma lavagem com ácido para remover os resíduos
  • Funcionalização: Carregado com agentes activos (por exemplo, I₂/Ag/KOH)
  • Adsorção direcionada: Captura melhorada de poluentes específicos (por exemplo, Hg⁰/H₂S/gases ácidos)
  • Personalização: Quimicamente optimizado para contaminantes alvo
  • Aplicações principais: Tratamento de gases industriais, proteção CBRN

Porquê utilizar o nosso carvão ativado

fabric(1)

Exceptional Material Consistency:

Our stringent manufacturing controls guarantee the uniformity of surface area, pore size distribution, and particle morphology from batch-to-batch. As a result, we offer predictable electrode performance, and easier integration into existing manufacturing systems.

Enhanced Electrochemical Performance:

Our engineered dual hierarchical porosity (micro-meso-macro pores) maximize the ion-accessible surface area while supporting fast ion diffusion, providing our electrodes with very high power density and energy density.

Improved Long-Term Stability:

By using advanced surface purification, we minimize the unstable oxygen functional groups and metallic impurities on our surface to minimize gas evolution during cycling, thus improving device lifetime, and operational safety.

sketch

Customized Application Solutions:

Our surface chemistry and pore structures can be tuned and customized for specific electrolyte compatibility and to target performance measures (e.g., high power vs. high energy focus).

copy-two-paper-sheets-interface-symbol(1)

Sustainable and Scalable Copying Supply:

We use reliable precursors and optimized activation conditions to ensure our practice is environmentally responsible and offers reliable quality at scale and reasonable costs.

Processo e tecnologia

1. Primary Electrode Material in EDLC Supercapacitors

Activated carbon (AC) serves as the foundational electrode material in commercial Electrical Double-Layer Capacitors (EDLCs), leveraging its porous structure for electrostatic charge storage.

Visão geral da solução

Upon AC electrodes, charge is stored physically due to the mechanism of ion adsorption at the electrode/electrolyte interface. AC electrodes have high surface area and tunable pore subnetworks (micro/mesopores) which could help with the number of accessible ions as well as the overall charge storage capacity.

Principais vantagens

2. Biomass-Derived Sustainable Electrodes

Agricultural waste (e.g., banana peels, coconut shells, pine needles) is converted into high-performance AC, aligning with circular economy principles.
 

Visão geral da solução

Biomass precursors undergo carbonization and chemical activation (e.g., KOH, self-activation) to produce AC with tailored pore hierarchies and heteroatom doping (O, N). This enhances conductivity and pseudocapacitance.

Principais vantagens

3. Composite Electrodes with Transition Metal Hydroxides

Hybrid electrodes combine AC with transition metal hydroxides (e.g., Ni(OH)₂, Co(OH)₂) to synergize EDLC and pseudocapacitive storage.

Visão geral da solução

AC acts as a conductive scaffold for metal hydroxides, mitigating their poor conductivity and stacking issues. The composite leverages both double-layer capacitance (AC) and reversible faradaic reactions (hydroxides).

Principais vantagens

4. Post-Filling for High Volumetric Performance

Low density of porous AC limits volumetric energy density. Post-filling strategies address this by densifying pore structures.

Visão geral da solução

Macro/mesopores in AC are filled with carbonizable agents (e.g., tannic acid), followed by carbonization. This increases density while preserving microporous charge storage sites.

Principais vantagens

5. Surface Functional Group Engineering for Gas Suppression

Unstable oxygen functional groups on AC cause gas evolution (e.g., O₂) during cycling, leading to supercapacitor swelling.

Visão geral da solução

High-temperature treatment removes surface groups (e.g., carboxyl, quinone). Mixed-acid purification further reduces impurities (e.g., Fe), minimizing gas generation.

Principais vantagens

Blogue relacionado

O papel do carvão ativado nos supercondensadores
Ler mais
Deslocar para o topo

Obter inquérito

Nome