金回収用活性炭
.webp)
Buy Gold Recovery Activated Carbon
業界の課題
Adsorptive Selectivity Difficulties
- Activated carbon does not adsorb gold solely but rather has competition from other metal cyanide complexes (e.g. copper, nickel) which affect the gold recovery.
- Organic sorption contaminants like humic acids further affect the selectivity of the carbon-supported composite materials.
Carbon Fouling / Deactivation
- Pore blockage can be from inorganic precipitates (e.g. calcium carbonate, silica) and from organic volatiles (e.g. oils, floculants).
- Mechanical agitation causes carbon erosion via attrition, and all mechanical erosion or attrition losses carbon.
Regeneration Limitations
- Through thermal reactivation, activated carbons have limits to their capacity to adsorb.
- The process of thermal reactivation can create damage to the carbon's pore structure that is irreversible, and can damage carbons to unusable condition.
- The chemical process to strip valuable metals from carbon will create new aqueous waste streams that require treatment.
Processing Time Limitations
- The kinetics of adsorption are relatively slow and lead to increased retention times in both CIP/CIL circuits.
- In heap leach/CIC applications, channeling developes during carbon column feed(ing) with varying flow paths and a drop in recovery.
活性炭の種類
-r8fslg51nt6wgjtvh6yldxb1gtkgm3lpe0oq1akgog.webp)
- ヨウ素価:600-1200
- メッシュサイズ:1×4/4×8/8×16/8×30/12×40/20×40/20×50/30×60/40×70 (その他のサイズはお問い合わせください)
- 見かけ密度400-700
当社の活性炭を使用する理由

Enhanced Gold Selectivity:
Our specialized pore structure preferentially adsorbs gold-cyanide complexes over competing metal contaminants.

Superior Mechanical Durability:
High resistance to attrition minimizes carbon fragmentation during aggressive agitation processes.

Optimized Regeneration Performance:
Maintains consistent adsorption capacity through multiple thermal reactivation cycles.

Reduced Fouling Susceptibility:
Surface-modified carbon resists pore blockage from inorganic scales and organic impurities.
プロセスと技術
1. Carbon in Pulp (CIP)
ソリューションの概要
Gold-cyanide solution from leached ore slurry contacts activated carbon in sequential adsorption tanks, where gold selectively loads onto carbon particles.

主な利点
- Enables counter-current flow configuration for optimized gold recovery
- Allows separate optimization of leaching and adsorption stages
- Reduces gold losses through efficient solid-liquid separation
- Minimizes carbon handling in aggressive leaching environments
2. Carbon in Leach (CIL)
ソリューションの概要
Simultaneous leaching and adsorption occur in the same reactor tanks, with activated carbon added directly to the leaching slurry.

主な利点
- Integrates leaching and adsorption into single-stage operation
- Accelerates overall process kinetics through continuous gold removal
- Prevents gold re-precipitation by immediate adsorption
- Simplifies plant design with reduced tank requirements
3. Heap Leaching with Carbon in Columns (CIC)
ソリューションの概要
Pregnant solution from ore heaps percolates through fixed-bed columns packed with activated carbon for gold adsorption.

主な利点
- Handles low-grade solutions effectively through passive flow design
- Adapts to variable flow rates and solution volumes
- Eliminates mechanical agitation for reduced carbon attrition
- Facilitates simple carbon transfer for elution cycles
4. Carbon in Conduit / Fluidized Bed Systems
ソリューションの概要
Activated carbon moves counter-currently to gold-bearing solution in inclined channels or fluidized columns.

主な利点
- Enhances mass transfer efficiency through turbulent flow regimes
- Enhances mass transfer efficiency through turbulent flow regimes
- - Allows continuous carbon loading without process interruption
- - Minimizes channeling effects common in static columns